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Proof. Proposition 1

i) Implicit di¤erentiating (5) w.r.t. ti, and using A1-A3 yield

@pi
@ti

=

8>>>><>>>>:
� (1+�)Bpt(ti;pi)�Cpt(ti;pi)
(1+�)Bpp(ti;pi)�Cpp(ti;pi) > 0 if ti < �t

0 if �t � ti � t̂

� Bpt(ti;pi)�(1+�)Cpt(ti;pi)
Bpp(ti;pi)�(1+�)Cpp(ti;pi) > 0 if ti > t̂

Therefore bliss points are unique and (weakly) monotone in types. The policy

outcome is the median�s bliss point, pm. If �t � tm � t̂ then pm = pS. The outcome

is the status quo.

ii) Let t1m 2
�
�t; t̂
�
be the median of the type distribution at time 1, and let � be

a shock a¤ecting the median at time 2: t2m = t1m + �. A policy change occurs

at time 2 only if � > t̂ � t1m � 0, or � < �t � t1m � 0. Inertia is more likely if

� is larger. This follows from the fact that the size of the group of intermediate

types is increasing in loss aversion, which we show below. Recall that �t is implicitly

determined by (1 + �)Bp(t; pS) � Cp(t; pS) = 0, and t̂ is implicitly determined by

Bp(t; p
S)� (1 + �)Cp(t; pS) = 0. Implicit di¤erentiation yields

@�t

@�
= � Bp(�t; p

S)

(1 + �)Bpt(�t; pS)� Cpt(�t; pS)
< 0 and

@t̂

@�
= � �Cp(t̂; pS)

Bpt(t̂; pS)� (1 + �)Cpt(t̂; pS)
> 0

(23)

where inequalities follow from the fact that, by A3, the denominators of the two

above expressions are positive. Therefore, as � increases some �small�shocks might

not be su¢ cient to lead an intermediate median t1m to desire a policy change.

iii) Suppose ti < �t, then by (5) pi 6= pS solves the FOC (1+�)Bp(ti; p)�Cp(ti; p) = 0.

Then Bp(ti; p)�Cp(ti; p) = ��Bp(ti; p) < 0. Voter i�s bliss point with loss aversion

3



is higher than i�s bliss point with no loss aversion. Similarly, if ti > t̂ then i�s bliss

point with loss aversion is lower than with no loss aversion. Thus loss aversion yields

a moderating e¤ect on voter�s preferences. It is easy to see that this moderating

e¤ect is increasing in the loss aversion parameter.

Consider now the equilibrium outcome. If tm < �t, then by (5) pm < pS solves (1 +

�)Bp(tm; p)�Cp(tm; p) = 0. It follows that Bp(tm; p)�Cp(tm; p) = ��Bp(tm; p) < 0.

This means that the policy that maximizes the median�s indirect utility with loss

aversion would be too high if there was no loss aversion. Thus the policy outcome is a

higher policy, compared to the case with no loss aversion. Following the same steps,

if tm > t̂ the median�s optimality condition is Bp(tm; p)�Cp(ti; p) = �Cp(tm; p) > 0.

In this case the policy outcome pm is lower compared to the case with no loss

aversion. Note that this moderation e¤ect is stronger if the loss aversion parameter

� is larger. To see it, consider that, by (5), bliss points represent interior solutions

for high and low types. By A1-A2, implicit di¤erentiating of (5) for i = m yields,

@pm
@�
> 0 if tm < �t

@pm
@�
< 0 if tm > t̂

iv) Let the �high� and the �low� status quo be, respectively, pS1 and pS2 (with

pS1 > pS2), and let the inertia interval under pS1 and pS2 be
�
�t1; t̂1

�
and

�
�t2; t̂2

�
,

respectively. By the de�nition of �t and t̂ (cf. the proof of part ii) above),

@�t

@pS
= �(1 + �)Bpp(

�t; pS)� Cpp(t̂; pS)
(1 + �)Bpt(�t; pS)� Cpt(�t; pS)

> 0 and
@t̂

@pS
= �Bpp(

�t; pS)� (1 + �)Cpp(t̂; pS)
Bpt(t̂; pS)� (1 + �)Cpt(t̂; pS)

> 0

Thus both �t and t̂ are increasing in the status quo. Therefore, �t2 < �t1 and t̂2 < t̂1.

Suppose t̂2 < tm < �t1. In this case the median wants to increase the policy under
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pS2, but she wants to decrease it under pS1. By (5), in the former case she chooses

a level of the policy, call it p2m, that solves Bp(ti; p) � (1 + �)Cp(ti; p) = 0; in the

latter cases she chooses a level p1m that solves (1 + �)Bp(ti; p)�Cp(ti; p) = 0. Then

p1m > p
2
m.

Following the same steps, if pS1 < pS2 and t̂1 < tm < �t2 then p1m < p
2
m.

v) Suppose in period 1 a shock on the voters�preferences leads the median to prefer

a higher policy than the status quo: tm > t̂1. By (5), the new policy p1 = pm solves

Bp(tm; p)�(1+�)Cp(tm; p) = 0. In period 2, p1 becomes the status quo: p1 = pS2. By

statement iv) above, t̂2 > t̂1. Speci�cally, t̂2 solves Bp(t; pS2)� (1+�)Cp(t; pS2) = 0.

Since pm = p1 = pS2, we have Bp(t; pm)� (1+ �)Cp(t; pm) = 0. Then t̂2 = tm. Thus

in period 2 the median type is the upper limit of the inertia range
�
�t2; t̂2

�
. This

implies that the new status quo pS2 = pm beats any lower alternative with more

than the simple majority of votes in favor. Following the same steps it is possible to

prove that if tm > t̂1, then �t2 = tm. Once a lower policy becomes the status quo, it

beats any higher alternative with more than the simple majority of votes in favor.

Proof. Proposition 2

i) Consider a young voter i in period 1. For simplicity there is no discounting

for future utility. Bliss points in period 1 are sequentially rational and maximize

lifetime utility. First we prove that i�s bliss point is the same in both periods. We

proceed backwards: in period 2, the bliss point maximizes residual lifetime utility,

V (ti; p
2 j p1):

p2i 2 argmax
p2

8><>: V (ti; p
2)� � [C(ti; p2)� C(ti; p1)] if p2 � p1

V (ti; p
2)� � [B(ti; p1)�B(ti; p2)] if p2 < p1
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Thus,

p2i solves

8>>>><>>>>:
Bp(ti; p

2)� (1 + �)Cp(ti; p2) = 0 s.t. p2 > p1

p2 = p1 otherwise

(1 + �)Bp(ti; p
2)� Cp(ti; p2) = 0 s.t. p2 < p1

(24)

This ideal policy is a function of the state variable, p1. Let p2i = G(p
1) denote this

function.

At time 1, voter i chooses her bliss point p1i taking into account the consequences

of her choice today on her future preferences:

p1i 2 argmax
p1

�
V (ti; p

1 j p0) + V (ti; G(p1) j p1)
	

We now prove she has no incentive to choose p1 6= G(p1); i.e., in period 1 her ideal

policy is not di¤erent from her ideal policy in period 2. Suppose, by contradiction

she does. Say, p1 < G(p1). Assume also that p1 > p0. In this case, after some

algebraic manipulation, we can re-write the above objective function as:

B(ti; p
1)� C(ti; p1) +B(ti; G(p1))� C(ti; G(p1))

� �
�
C(ti; G(p

1))� C(ti; p0)
�

Recall that p1 > p0. Thus the interior solution solves:

@B(ti; p
1)

@p1
� @C(ti; p

1)

@p1
+
@B(ti; p

2
i )

@p2i

@p2i
@p1

� (1 + �)@C(ti; p
2
i )

@p2i

@p2i
@p1

= 0

Since p1 < p2i = G(p1), by implicit di¤erentiating (24) above, G0(p1) = @p2i
@p1

= 0.
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Thus, if p0 < p1 < p2i , the last two terms of the above equation are zero. Then the

equation which pins down the median�s most preferred policy in period 1 is

@B(ti; p
1)

@p1
� @C(ti; p

1)

@p1
= 0

Observe that in this case the policy is chosen rationally, i.e., the ideal policy is the

same as in the case with no loss aversion. But this is a contradiction, because if

voter i chooses the policy rationally in period 1, then she will have no chance to

increase her utility in period 2 other than keeping that policy unchanged. Thus,

the policy she chooses in period 1 must be the same as the policy she chooses in

period 2. But this contradicts the assumption that p1 < p2i . Applying the same

rationale, it can be proved that a contradiction arises also in the other three cases:

1. p0 > p1 < p2i ; 2. p
0 < p1 > p2i ; 3. p

0 > p1 > p2i . This proves that p
1
i = p

2
i : in

period 1 voter i�s ideal policy is the same as in period 2.

In period 1, voter i sets p1i so as to maximize her lifetime utility at period 1, V (ti; p
1 j

p0) + V (ti; G(p
1) j G(p1)), which can be rewritten as:

8><>: 2B(ti; p
1)� 2C(ti; p1)� � [C(ti; p1)� C(ti; p0)] if p1 � p0

2B(ti; p
1)� 2C(ti; p1)� � [B(ti; p1)�B(ti; p0)] if p1 < p0

Therefore

p1i solves

8>>>><>>>>:
Bp(ti; p

1)� (1 + �
2
)Cp(ti; p

1) = 0 s.t. p1 > p0

p1 = p0 otherwise

(1 + �
2
)Bp(ti; p

1)� Cp(ti; p1) = 0 s.t. p1 < p0

and p2i = p
1
i
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this proves that a young voter i sets her ideal policy �as if�her perceived loss aver-

sion was �
2
. Thus �y = �=2. This result can easily be extended to the case in which

a voter�s residual life consists in n periods. In this case, her perceived loss aversion

is �=n. By �=2 = �y < �o = � and by (23), it follows that t̂o > t̂y and �ty > �to. Thus

the mass of young voters who want the status quo (F (t̂y) � F (�ty)) is smaller than

the mass of old voters who want the status quo (F (t̂o)� F (�to)).

ii) Consider the inequality in (8). The �rst term is the percentage of old voters

blocking an increase in the policy, where 1 � � is the old voters�share in the pop-

ulation and t̂o is the highest old blocking type. The second term, �F (t̂y), is the

percentage of young blocking voters in the entire population. If these two blocking

groups represent less than 50% of the population, the inequality in (8) is satis�ed.

The majority will choose a higher policy than the status quo. Condition (9), says

that a lower policy will pass if those who prefer the status quo or any higher policy

are less than a half of the population. Of course the two conditions are mutually

exclusive (i.e. if there is a majority willing to increase the policy there cannot be

a majority willing to decrease it). If neither of the two conditions is satis�ed, then

the status quo remains.

iii) Since t̂o > t̂y, then F (t̂o) > F (t̂y). By (6-7), the term in the LHS of (8),

(1 � S(b))F (t̂o) + S(b)F (t̂y), is decreasing in b. Thus, the lower b, the smaller the

set of parameter values for which a constituency in favor of p > pS exists. Following

the same steps, also the term in the LHS of (9) is decreasing in b. Thus, the lower

b, the smaller the set of parameter values for which (9) is satis�ed. Summing up,

with a lower birth rate, a constituency for a policy reform is less likely to form.

iv) Suppose in a given period k a constituency for a reform exists. For instance, a
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shock in preferences/distribution/birth rate is such that either condition (8) or (9)

is satis�ed. We prove here that the reform will be more di¤erent from the status quo

the more numerous are the young. The equations that pin down the equilibrium

policy p are:

if (8) holds, p > pS solves: (1� �)F (H�1o(p)) + �F (H�1y(p)) = 0:5 (25)

if (9) holds, p < pS solves: (1� �)(1� F (H�1o(p))) + �(1� F (H�1y(p))) = 0:5

(26)

if neither (8) nor (9) hold, p = pS (27)

where H�1o(p) is the inverse function of (5) in the old group (in which perceived

loss aversion is �o = �). It yields the type of old voter whose bliss point is p. Thus

F (H�1o(p)) is the share of old voters who want a lower policy than p. Similarly,

H�1y(p) is the inverse function of (5) in the young group (with perceived loss aversion

�y = �=2), and F (H�1y(p)) is the share of young voters who want a lower policy than

p. Note that H�1o(p) and H�1o(p) are not de�ned at the point p = pS. Equations

in (25) and (26) say that the reform is a new policy p 6= pS such that exactly a half

of the population want a lower policy (and the other half want a higher policy).

Speci�cally, the median type is the same in both generations, the young median

wants a di¤erent policy than the old median. Thus the equilibrium pk is in between

their bliss points, and it is set according to (25)-(26).

If (8) holds, then equation (25) pins down the equilibrium policy pk > pS. By (6),
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implicit di¤erentiating (25) w.r.t. b yields

@pk

@b
= �

Sb �
�
F (H�1y(pk)� F (H�1o(pk))

�
(1� �)f(H�1o(pk))H�1o

p (pk) + �f(H�1y(pk))H�1y
p (pk)

> 0 for pk > pS

where the inequality follows from the fact that Sb > 0 and F (H�1y(p) < F (H�1o(p))

for any p > pS, and the denominator is positive since all terms are positive (specif-

ically, by (5) the relations between bliss points and types are strictly positive for

young and old, thus their inverses derivatives are positive: H�1y
p (p); H�1o

p (p) > 0).

Following the same steps, by implicit di¤erentiation of (26) w.r.t. b and taking into

account that, for any p < pS, F (H�1y(p) > F (H�1o(p)), we have

@pk

@b
= �

Sb �
�
F (H�1o(pk)� F (H�1y(pk))

�
�(1� �)f(H�1o(pk))H�1o

p (pk)� �f(H�1y(pk))H�1y
p (pk)

< 0 for pk < pS

Hence, in case of a policy change, the lower b, the lower the distance between the

equilibrium policy pk and the status quo.

Proof. Proposition 3

With loss aversion, the two candidates�objective functions are

U l � U(x; l) � P (x; y; pS) + U(y; l) �
�
1� P (x; y; pS)

�
(28)

U r � U(x; r) � P (x; y; pS) + U(y; r) �
�
1� P (x; y; pS)

�
(29)

where P (x; y; pS) � Pr
�
TLA(x; y; pS) > tm + �

	
= 1

2�
(TLA(x; y; pS)� tm + �). Nash
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equilibrium, fx�; y�g, is found by simultaneously solving the following two FOCs

U lx = Ux(x; l) � P (x; y; pS) + [U(x; l)� U(y; l)] � Px(x; y; pS) = 0 (30)

U ry = Uy(y; r) �
�
1� P (x; y; pS)

�
� [U(y; r)� U(x; r)] � Py(x; y; pS) = 0 (31)

The two SOCs are satis�ed if U(p; l) and U(p; r) are su¢ ciently concave. For the

stability condition, see the proof of Proposition 4 below.

By (16), the loss aversion parameter � a¤ects the type of the indi¤erent voter, tLAind.

As tLAind changes, the candidates�incentive to propose higher or lower platform change

accordingly. Thus, we can compare what happens with and without loss aversion

if we let the indi¤erent voter with loss aversion be �su¢ ciently close�to the indif-

ferent voter with no loss aversion. For simplicity, assume tLAind = tind (results below

go through if tLAind and tind are su¢ ciently close). By (16-10), t
LA
ind = tind implies that

B(tLAind; p
S)�B(tLAind; x) = C(tLAind; y)�C(tLAind; pS). Thus, TLAx = �Vx(tLAind;x)+�Bx(t

LA
ind;x)

Vt(tLAind;x)�Vt(tLAind;y)
>

Tx = � Vx(tind;x)
Vt(tind;x)�Vt(tind;y) and T

LA
y = ��Vy(tLAind;x)+�Cy(tLAind;y)

Vt(tLAind;x)�Vt(tLAind;y)
> Ty = � �Vy(tLAind;x)

Vt(tind;x)�Vt(tind;y) .

This implies that, for any x and y, Px(x; y; pS) > Px(x; y) and Py(x; y; pS) > Py(x; y);

i.e. under loss aversion a marginal change in a candidate�s platform has a big-

ger impact on his winning probability. Note that tLAind = tind also implies that

P (x; y; pS) = P (x; y). The two equilibrium strategies with no loss aversion solve

(14-15), but they cannot solve (30-31). Speci�cally, at the equilibrium point with

no loss aversion, the LHS of (30) is strictly positive, and the LHS of (31) is strictly

negative. This implies that, with loss aversion, the left-wing candidate has incen-

tive to propose a higher platform than with no loss aversion, while the right-wing

candidate has incentive to propose a lower platform. Now we complete the proof

by showing that the equilibrium with loss aversion implies more similar platforms.
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Let (x�1; y�1) be the equilibrium with no loss aversion, and (x�2; y�2) the equilibrium

with loss aversion. Assume by contradiction that the latter entails less conver-

gence: x�2 < x�1 < y�1 < y�2. The assumption of su¢ ciently high concavity yields

U lxy; U
r
yx � 0: Therefore U lx(x�2; y�2) � U lx(x�2; y�1) > U lx(x�1; y�1) > 0 where the �rst

inequality follows from U lxy � 0 and the second one follows from U lxx < 0: Hence, at

the point (x�1; y�1) candidate l has incentive to increase his platform. This yields a

contradiction. Finally, assume x�2 < x�1 < y�2 < y�1. In such a case, tLAind < tind,

violating the hypothesis. Therefore, by contradiction, with loss aversion equilibrium

platforms are more similar.

Special cases.

We consider now how equilibrium is a¤ected by loss aversion when both equilibrium

platforms are either above or below the status quo. We will prove that in these

cases the equilibrium platforms una¤ected by changes in the status quo, but they

are closer to the status quo, than with no loss aversion.

Case 1: both platforms are below the status quo

If fx; yg 2 [0; pS]2, the indi¤erence condition that pins down the indi¤erent type,

tLAind, is

V (tLAind; x)� �
�
B(tLAind; p

S)�B(tLAind; x)
�
= V (tLAind; y)� �

�
B(tLAind; p

S)�B(tLAind; y)
�

which simpli�es into

V (tLAind; x) + �
�
B(tLAind; x)

�
= V (tLAind; y) + �

�
B(tLAind; y)

�
: (32)
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As a result tLAind = T
LA(x; y) is independent of the status quo. Thus also the prob-

ability that candidate left wins P (x; y) = 1
2�
(TLA(x; y) � tm + �) does not depend

of pS: Hence, equilibrium platforms are independent of the status quo, @x�

@pS
= 0,

@y�

@pS
= 0.

Now we prove that loss aversion implies that both equilibrium platforms are closer

to the status quo. Implicit di¤erentiation of (32) yields

T� =
B((tLAind; x)�B(tLAind; y)

Vt(tLAind; y)� Vt(tLAind; x) + �[Bt(tLAind; y)�Bt(tLAind; x)]
< 0:

This means that, for any fx; yg 2 [0; pS]2 we have that TLA(x; y) < T (x; y): This

implies that given an equilibrium with no loss aversion (x1; y1); if there exists

a parameter � such that the equilibrium with loss aversion (x�; y�) is such that

TLA(x�; y�) = T (x1; y1); then (x�; y�) 6= (x1; y1): Moreover, it must be the case that

x1 < x� < y1 < y�; i.e. the policies with loss aversion are closer to the Status Quo

pS: Notice that

TLAx =
Vx(t

LA
ind; x) + �Bx(t

LA
ind; x)

Vt(tLAind; y)� Vt(tLAind; x) + �[Bt(tLAind; y)�Bt(tLAind; x)]
=

=
(1 + �)Bx(t

LA
ind; x)� Cx(tLAind; x)

(1 + �)[Bt(tLAind; y)�Bt(tLAind; x)]� [Ct(tLAind; y)� Ct(tLAind; x)]
>

>
Bx(t

LA
ind; x)� Cx(tLAind; x)

[Bt(tLAind; y)�Bt(tLAind; x)]� [Ct(tLAind; y)� Ct(tLAind; x)]
=

=
Vx(t

LA
ind; x)

Vt(tLAind; y)� Vt(tLAind; x)
= Tx
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Moreover:

TLAy = � Vy(t
LA
ind; y) + �By(t

LA
ind; y)

Vt(y; tLAind)� Vt(x; tLAind) + �[Bt(tLAind; y)�Bt(tLAind; x)]
=

=
Cy(t

LA
ind; x)� (1 + �)By(tLAind; x)

(1 + �)[Bt(tLAind; y)�Bt(tLAind; x)]� [Ct(tLAind; y)� Ct(tLAind; x)]
<

<
Cy(t

LA
ind; x)�By(tLAind; x)

[Bt(tLAind; y)�Bt(tLAind; x)]� [Ct(tLAind; y)� Ct(tLAind; x)]
=

= � Vy(t
LA
ind; y)

Vt(tLAind; y)� Vt(tLAind; x)
= Ty:

Where Tx and Ty are the derivatives of the indi¤erent type with no loss aversion.

Let a; b ; c; d be positive numbers such that a�b
c+d

> 0: Take k > 1: Then ka�b
kc+d

>

ka�kb
kc+kd

> a�b
c+d

: which implies the �rst inequality TLAx > Tx. Moreover a�kb
kc+d

< a�b
c+d

implies the second inequality TLAy < Ty.

To see this, set a = Bx(tLAind; x); b = Cx(t
LA
ind; x); c = [Bt(t

LA
ind; y) � Bt(tLAind; x)]; d =

�[Ct(tLAind; y)�Ct(tLAind; x)] ;and k = (1+�) for the �rst inequality; set a = Cy(tLAind; x) and

b = By(t
LA
ind; x) for the second inequality.

The two inequalities above imply that, for any x and y, and any � > 0, Px(x; y) <

Px(x; y; �), and Py(x; y; �) < Py(x; y):We already know that, if tLAind = tind, the equi-

librium with no loss aversion (x1; y1) is di¤erent from the equilibrium under loss

aversion (x�; y�). Moreover, it does not satisfy the FOCs with loss aversion, because

Px(x
1; y1; �) > Px(x

1; y1) and Py(x1; y1; �) < Py(x1; y1): Speci�cally: 0 = U lx(x
1; y1) <

U lx(x
1; y1; �) and 0 = U ry (x

1; y1) < U ry (x
1; y1; �): Thanks to the enough concavity as-

sumption of U that is invoked throughout the discussion: U lxy > 0, U ryx > 0; and

U lxx < 0; U
r
yy < 0:

Now, suppose the equilibrium is such that x� < x1 < y1 < y�. Thus 0 < U lx(x
1; y1; �)
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< U lx(x
1; y�; �) < U lx(x

�; y�; �) where the �rst inequality comes from U lxy > 0 and the

second from U lxx < 0: So this one cannot be an equilibrium. Next, x
1 < x� < y� < y1:

Then 0 < U ry (x
1; y1; �) < U ry (x

�; y1; �) < U ry (x
�; y�; �) where the �rst inequality

comes from U rxy > 0 and the second from U ryy < 0:Thus, it cannot be an equi-

librium either. Finally, suppose x� < x1 < y� < y1: in such a case tLAind 6= tind

in contradiction with the hypothesis. Therefore, any equilibrium (x�; y�) where

TLA(x�; y�; �) = T (x1; y1); must be such that x1 < x� < y1 < y�. This proves that

with loss aversion both equilibrium platforms are closer to the status quo, than with

no loss aversion.

Case 2: both platforms are above the status quo

If fx; yg 2 [0; pS]2, the indi¤erence condition that pins down the indi¤erent type,

tLAind, is

V (tLAind; x)� �
�
C(tLAind; x)� C(tLAind; pS)

�
= V (tLAind; y)� �

�
C(tLAind; y)� C(tLAind; pS)

�
which simpli�es into

V (tLAind; x)� �
�
C(tLAind; x)

�
= V (tLAind; y)� �

�
C(tLAind; y)

�
: (33)

Following the same steps as in Case 1 above, @x
�

@pS
= 0, @y

�

@pS
= 0.

Implicit di¤erentiation of 33 yields

T� =
C((tLAind; y)� C(tLAind; x)

Vt(tLAind; y)� Vt(tLAind; x)� �[Ct(tLAind; y)� Ct(tLAind; x)]
> 0:

following the same steps as above, we can show that x� < x1 < y� < y1; i.e. the
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policies under loss aversion are closer to the Status Quo pS :

TLAx (x; y; �) =
Vx(t

LA
ind; x)� �Cx(tLAind; x)

Vt(tLAind; y)� Vt(tLAind; x)� �[Ct(tLAind; y)� Ct(tLAind; x)]
=

=
Bx(t

LA
ind; x)� (1 + �)Cx(tLAind; x)

[Bt(tLAind; y)�Bt(tLAind; x)]� (1 + �)[Ct(tLAind; y)� Ct(tLAind; x)]
<

<
Bx(t

LA
ind; x)� Cx(tLAind; x)

[Bt(tLAind; y)�Bt(tLAind; x)]� [Ct(tLAind; y)� Ct(tLAind; x)]
=

=
Vx(t

LA
ind; x)

Vt(tLAind; y)� Vt(tLAind; x)
= Tx(x; y)

Moreover

TLAy (x; y; �) = � Vy(t
LA
ind; x)� �Cy(tLAind; x)

Vt(tLAind; y)� Vt(tLAind; x)� �[Ct(tLAind; y)� Ct(tLAind; x)]
=

=
(1 + �)Cy(t

LA
ind; x)�By(tLAind; x)

[Bt(tLAind; y)�Bt(tLAind; x)]� (1 + �)[Ct(tLAind; y)� Ct(tLAind; x)]
>

>
Cy(t

LA
ind; x)�By(tLAind; x)

[Bt(tLAind; y)�Bt(tLAind; x)]� [Ct(tLAind; y)� Ct(tLAind; x)]
=

= � Vy(t
LA
ind; y)

Vt(tLAind; y)� Vt(tLAind; x)
= Ty(x; y):

Using the same argument as in Case 1, 0 = U lx(x
1; y1) > U lx(x

1; y1; �) and 0 =

U ry (x
1; y1) > U ry (x

1; y1; �): Assume x1 < x� < y� < y1: Then 0 > U lx(x
1; y1; �) >

U lx(x
1; y�; �) > U lx(x

�; y�; �) where the �rst inequality follows from U lxy > 0 and the

second one from U lxx < 0: So, it cannot be an equilibrium.

Now, assume x� < x1 < y1 < y�: We have 0 > U ry (x
1; y1; �) > U ry (x

�; y1; �) >

U ry (x
�; y�; �) where the �rst inequality follows from U rxy > 0 and the second one

from U ryy < 0: As a result, it is not an equilibrium. Finally, assume x1 < x� <
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y1 < y�. This implies that tLAind 6= tind, which is in contradiction with the hypothesis.

Therefore, any equilibrium (x�; y�) where TLA(x�; y�; �) = T (x1; y1); must be such

that x� < x1 < y� < y1: with loss aversion, equilibrium platforms are closer to the

status quo.

Results for Cases 1 and 2 are consistent with the idea presented in the main text that

with loss aversion candidates �x their platforms to accommodate voters�attachment

to the status quo (moderation e¤ect).

Case 3: core party members are subject to loss aversion

We now show that equilibrium platforms are more similar when core party members

are subject to loss aversion. We assume that the candidates�objective functions are

the same as the indirect utility functions of their core party members :

U(p; l j pS) =
V (p; l)� �

�
B(pS; l)�B(p; l)

�
if p < pS

V (p; l)� �
�
C(p; l)� C(pS; l)

�
if p � pS

(34)

U(p; r j pS) =
V (p; r)� �

�
B(pS; r)�B(p; r)

�
if p < pS

V (p; r)� �
�
C(p; r)� C(pS; r)

�
if p � pS

(35)

where the type of the left-wing (right-wing) core party members is l (r, respectively).

Let the two parties�ideal policies with loss aversion be �lLA < pS and �rLA > pS. They

maximize the two above functions, respectively. With no loss aversion, the two most

preferred policies are �l and �r which maximize V (p; l) and V (p; r), respectively. It is

easy to see that �lLA > �l and �rLA < �r . Let ~x� and ~y� be the equilibrium platforms

when core party members are subject to loss aversion, with ~x� < pS < ~y�. They
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solve the following two FOCs

U lLAx = Ux(x; l j pS) � P (x; y; pS) +
�
U(x; l j pS)� U(y; l j pS)

�
� Px(x; y; pS) = 0

(36)

U rLAy = Uy(y; r j pS) �
�
1� P (x; y; pS)

�
�
�
U(y; r j pS)� U(x; r j pS)

�
� Py(x; y; pS) = 0

(37)

where P (x; y; pS) is de�ned as in the proof of Proposition 4.

We want to show that the equilibrium when core party members are not loss averse

cannot be the equilibrium when they are loss averse. Let fx�; y�g be the equilibrium

platforms when core party members are not loss averse. We show that fx�; y�g solve

(30-31) but they do not solve (36-37). If x� and y� are su¢ ciently symmetrical with

respect to the status quo, then
�
U(x�; l j pS)� U(y�; l j pS)

�
� [V (x�; l)� V (y�; l)]

and
�
U(y�; r j pS)� U(x�; r j pS)

�
� [V (y�; r)� V (x�; r)] are su¢ ciently small. Thus

the signs of (36) and (37) are determined by Ux(x�; l j pS) and Uy(y�; r j pS),

respectively. Since x� < pS, by (34), Vx(x; l) < Ux(x; l j pS). Since y� 2 (pS; �rLA),

by (35), Uy(y; r j pS) > Vy(x; l) > 0. Thus, at the point fx�; y�g (36) is positive,

and (37) is negative. The left-wing candidate has incentive to propose a higher

policy and the right-wing has incentive to propose a lower policy. Therefore, the

equilibrium when core party members are not loss averse cannot be an equilibrium

when they are loss averse. The equilibrium policies are more convergent when core

party members are loss averse.

Proof. Proposition 4

i) By (30-31), x� = XLA(pS) and y� = Y LA(pS). We can derive comparative statics
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by solving for the derivatives of XLA and XLA:

@x�

@pS
=

�������
�U lxpS U lxy

�U rypS U ryy

�������
jAj (38)

@y�

@pS
=

�������
U lxx �U lxpS

U ryx �U rypS

�������
jAj

where jAj = U lxxU ryy�U lxyU ryx > 0 is the standard regularity condition which ensures

stability at the equilibrium point. We show below that it is satis�ed if U(p; l)

and U(p; r) are su¢ ciently concave. Since jAj > 0, the sign of @x�

@pS
is the same

as the sign of �U lxpSU ryy + U lxyU rypS . The sign of
@y�

@pS
, it is the same as the sign of

�U rypSU lxx + U ryxU lxpS . By U lx and U ry de�ned in (30-31),

U lxx = Uxx(x; l) � P + 2Ux(x; l) � Px + [U(x; l)� U(y; l)] � Pxx (39)

U ryy = Uyy(y; r) � [1� P ]� 2Py � Uy(y; r) + [U(x; r)� U(y; r)] � Pyy (40)

U lxy = Ux(x; l) � Py � Uy(y; l) � Px + [U(x; l)� U(y; l)]Pxy (41)

U ryx = �Uy(y; r) � Px + Ux(x; r) � Py + [U(x; r)� U(y; r)] � Pyx (42)

U lxpS = Ux(x; l) � PpS + [U(x; l)� U(y; l)] � PxpS (43)

U rypS = �Uy(y; r) � PpS + [U(x; r)� U(y; r)] � PypS (44)

In order to determine the signs of (39-44), we need to study the derivatives of the

winning probability function, P (x; y; pS).
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By implicit di¤erentiation of (16),

TLApS =
@tLAind
@pS

= �
��

�
Bp(t

LA
ind; p

S) + Cp(t
LA
ind; p

S)
�

M
< 0 (45)

where M < 0 and it is de�ned by

M � Vt(tLAind; x)� Vt(tLAind; y)�

�
�
Bt(t

LA
ind; p

S)�Bt(tLAind; x)
�
+

�
�
Ct(t

LA
ind; y)� Ct(tLAind; pS)

�
The inequality M < 0 follows from the fact that a marginally higher type than tLAind

prefers y more than x.

Following the same steps, TLAx = �Vx(tLAind;x)+�Bx(t
LA
ind;x)

M
> 0 and TLAy = ��Vy(tLAind;y)+�Cy(tLAind;y)

M
>

0.

Therefore, Px = 1
2�
TLAx > 0, Py = 1

2�
TLAy > 0, and PpS =

1
2�
TLApS < 0 (by (45)).

As for second order derivatives, signs are ambiguous:

TLAxx = � (Vxx+�Bxx+(Vtx+�Btx)TLAx )M�(Vx+�Bx)(Vtx+�Btx+MtTLAx )
M2 7 0;

similarly, TLAyy ; T
LA
xy 7 0. Moreover,

TLAxpS = �
[Vxt + �Bxt]T

LA
pS M � (Vx + �Bx)�(�BtpS � CtpS +MtT

LA
pS )

M2
7 0 (46)

and TLAypS 7 0. Therefore Pxx = 1
2�
TLAxx 7 0, and Pyy; PxpS ; PypS ; Pyx 7 0.

By (39-40), if function U(p; :) is su¢ ciently steep and concave in the policy p, then

U lxx; U
r
yy < 0. Moreover, by (41-42), enough concavity also ensures U lxy; U

r
yx > 0.

Therefore, the stability condition jAj > 0 is satis�ed. Note that if � = 0, this model
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coincides with the model in subsection (5.1). Also in that model a su¢ cient degree

of concavity of U(p; :) ensures that the standard regularity condition is satis�ed.

By (43, 44), if jUx(x; l)j and j�Uy(y; r)j are large enough, then U lxpS ; U rypS > 0,

irrespective of the sign of PxpS and PypS . Since U lxx; U
r
yy < 0 and U ryx; U

l
xy > 0,

then �U lxpSU ryy + U lxyU rypS > 0 and �U rypSU lxx + U ryxU lxpS > 0. Hence,
@x�

@pS
; @y

�

@pS
> 0:

equilibrium platforms are increasing in the status quo. Finally, observe that by (46),

if jBxtj and jCxtj are su¢ ciently small, then
��PxpS �� = 1

2�

���TLAxpS ��� is small and, similarly,��PypS �� is small. In this case, a larger set of parameters would ensure U lxpS ; U rypS > 0.
The reason is that small values of jBptj and jCptj imply that a change in the status

quo does not have a strong e¤ect on the number of voters that candidates can

a¤ect by changing their platforms at the margin. Thus both candidates have strong

incentive to move their platforms in the same direction as the status quo.

ii) The expected equilibrium policy outcome is E(p�; pS) = x� � P (x�; y�; pS) + y� �

(1� P (x�; y�; pS)), where

P (x�; y�; pS) =
1

2�

�
TLA(x�; y�; pS)� tm + �

�
(47)

and x� = XLA(pS) and y� = Y LA(pS), with @x�

@pS
; @y

�

@pS
> 0. Di¤erentiating E(p�; pS)

w.r.t. pS yields,

@E(p�; pS)

@pS
=
@x�

@pS
� P + @y�

@pS
� (1� P ) + @P

@pS
� (x� � y�)

where @P
@pS

= 1
2�

h
TLApS + TLAx

@x�

@pS
+ TLAy

@y�

@pS

i
. We want to show that @E(p

�;pS)
@pS

> 0. By

statement i) in this proposition, the �rst two terms are positive. The sign of the last

term is ambiguous, because TLApS < 0 and TLAx ; TLAy > 0 (cf. proof of statement i)
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above). Thus @P
@pS

� (x� � y�) = 1
2�

h
TLApS + TLAx

@x�

@pS
+ TLAy

@y�

@pS

i
� (x� � y�) 7 0. How-

ever, by Proposition 3, equilibrium platforms converge under loss aversion. Hence,

if � is su¢ ciently large, jx� � y�j is small enough, so that the sign of @E(p�;pS)
@pS

is

determined by the sign of the �rst two terms. Thus @E(p�;pS)
@pS

> 0. Note that large

enough steepness and concavity of the candidates�utility functions is a su¢ cient

condition to show that @E(p�;pS)
@pS

> 0. It is perfectly plausible that this derivative

is positive despite @x�

@pS
and @y�

@pS
have opposite signs. Supplementary Material avail-

able from the authors includes two parametric examples, one of which showing that

expected policy is positively related to status quo, while @x�

@pS
< 0 and @y�

@pS
> 0.

Proof. Proposition 5

As mentioned earlier, the expected policy outcome is de�ned as E(p�2; p1) = x�2 �

P (x�2; y�2; p1)+ y�2 � (1�P (x�2; y�2; p1)). The status quo in period 2 is the winner�s

equilibrium platform in period 1: p1 2 fx�1; y�1g, with x�1 < y�1. By Proposition

4, there is a positive relationship between expected policy and status quo. Thus,

E(p�2; x�1) < E(p�2; y�1).

Proof. Proposition 6

Let fx01; y01g be the equilibrium of the static model, where both candidates maxi-

mize their expected utility in period 1 only. We want to show that the FOCs for the

equilibrium in the dynamic model are not satis�ed at fx01; y01g. Consider candidate

l. We show that enough concavity of U(p; l) ensures that the LHS of (21) is positive

at the point fx01; y01g. By (30-31), the �rst term of (21) is zero by de�nition. The

second term is positive because P 1x1 > 0 and by Proposition 4 U
2l(::; x1) > U2l(::; y1).

This term is large if concavity of U(p; l) is high. As for the third term, recall that

the winning probability in the second period depends on equilibrium policies and
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the second period status quo, P 2 = P 2(x�2; Y 2(x1); x1). Thus, by (28), and by the

envelope theorem, the third term is

P 1�U2lx1(:; x1) = P 1�
��
U(x�2; l)� U(Y 2(x1); l)

� �
P 2y2Y

2
x1 + P

2
x1

�
+ Uy2(y

2; l) �
�
1� P 2

�
Y 2x1
	

The above expression characterizes a trade-o¤ about the policy outcome in period

2. On the one hand, a marginal increase in x1 yields a higher y�2, which in turn

raises the left-wing candidate�s chance to win also in the second period (P 2y2Y
2
x1 > 0).

On the other hand, holding x�2 and y�2 constant, a marginal increase in the status

quo, x1, lowers the left-wing candidate�s probability to win in period 2 (P 2x1 < 0).

Moreover, in the case the left-wing candidate is defeated in period 2, a higher y�2

implies a lower utility in the second period. Summing up, the third term of (21)

can be either positive or negative. A su¢ ciently high concavity of U(p; l) ensures

that the second term of (21) is large enough, making entire expression (21) positive

at the point fx01; y01g.

Following the same steps, expression (22) is strictly negative at the point fx01; y01g.
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